Platelet Control of Fibrin Distribution and Microelasticity in Thrombus Formation Under Flow.
نویسندگان
چکیده
OBJECTIVE Platelet- and fibrin-dependent thrombus formation is regulated by blood flow and exposure of collagen and tissue factor. However, interactions between these blood-borne and vascular components are not well understood. APPROACH AND RESULTS Here, we developed a method to assess whole-blood thrombus formation on microspots with defined amounts of collagen and tissue factor, allowing determination of the mechanical properties and intrathrombus composition. Confining the collagen content resulted in diminished platelet deposition and fibrin formation at high shear flow conditions, but this effect was compensated by a larger thrombus size and increased accumulation of fibrin in the luminal regions of the thrombi at the expense of the base regions. These thrombi were more dependent on tissue factor-triggered thrombin generation. Microforce nanoindentation analysis revealed a significantly increased microelasticity of thrombi with luminal-oriented fibrin. At a low shear rate, fibrin fibers tended to luminally cover the thrombi, again resulting in a higher microelasticity. Studies with blood from patients with distinct hemostatic insufficiencies indicated an impairment in the formation of a platelet-fibrin thrombus in the cases of dilutional coagulopathy, thrombocytopenia, Scott syndrome, and hemophilia B. CONCLUSIONS Taken together, our data indicate that (1) thrombin increases the platelet thrombus volume; (2) tissue factor drives the formation of fibrin outside of the platelet thrombus; (3) limitation of platelet adhesion redirects fibrin from bottom to top of the thrombus; (4) a lower shear rate promotes thrombus coverage with fibrin; (5) the fibrin distribution pattern determines thrombus microelasticity; and (6) the thrombus-forming process is reduced in patients with diverse hemostatic defects.
منابع مشابه
The Effect of Factor VIII Deficiencies and Replacement and Bypass Therapies on Thrombus Formation under Venous Flow Conditions in Microfluidic and Computational Models
Clinical evidence suggests that individuals with factor VIII (FVIII) deficiency (hemophilia A) are protected against venous thrombosis, but treatment with recombinant proteins can increase their risk for thrombosis. In this study we examined the dynamics of thrombus formation in individuals with hemophilia A and their response to replacement and bypass therapies under venous flow conditions. Fi...
متن کاملDifferential inhibitory action of apixaban on platelet and fibrin components of forming thrombi: Studies with circulating blood and in a platelet-based model of thrombin generation
INTRODUCTION Mechanisms of action of direct oral anticoagulants (DOAC) suggest a potential therapeutic use in the prevention of thrombotic complications in arterial territories. However, effects of DOACs on platelet activation and aggregation have not been explored in detail. We have investigated the effects of apixaban on platelet and fibrin components of thrombus formation under static and fl...
متن کاملEffects of red blood cell concentration on hemostasis and thrombus formation in a primate model.
Because the effects of red blood cell (RBC) concentration on hemostasis and thrombus formation have not been studied experimentally under conditions of whole blood flow without anti-coagulation, normal baboons were bled or transfused to obtain three different groups: a low hematocrit (Ht) group (20% less than Ht less than 25%), a normal Ht group (35% less than Ht less than 40%), and a high Ht g...
متن کاملComputational Study of Thrombus Formation and Clotting Factor Effects under Venous Flow Conditions.
A comprehensive understanding of thrombus formation as a physicochemical process that has evolved to protect the integrity of the human vasculature is critical to our ability to predict and control pathological states caused by a malfunctioning blood coagulation system. Despite numerous investigations, the spatial and temporal details of thrombus growth as a multicomponent process are not fully...
متن کاملContribution of von Willebrand factor to thrombus formation on neointima of rabbit stenotic iliac artery under high blood-flow velocity.
OBJECTIVE It has become clear that von Willebrand factor (vWF) plays important roles in platelet adhesion and aggregation under high blood-flow velocity conditions observed in stenotic atherosclerotic arteries. However, its roles in thrombus formation in vivo on diseased arteries have not been fully understood. We examined the contribution of vWF to thrombus formation and subsequent intimal gro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 36 4 شماره
صفحات -
تاریخ انتشار 2016